Past Critical Issues Projects

North Central IPM Center Critical Issues grant proposals are awarded annually, and are 1-year research projects that focus on an important pest issue. Currently funded projects are described on the Critical Issues page, and the grants page explains the funding application process. 

 

2021-Development of Degree-day Model for Management of Spotted Wing Drosophila in Small Fruit Production in Missouri

Project Director: Clement Akotsen-Mensah, Lincoln University

The spotted wing drosophila (SWD), Drosophila suzukii was first reported in Missouri in June 2013, and has since become a major pest in Missouri and other states in the North Central Region. It is currently spreading and poses serious threat to small fruit production like blackberries, blueberries, cherries, elderberries, strawberries, and other tree fruit crops. Like many other pests, the development of monitoring tools is an important first step towards an effective IPM program. Fortunately, there are good commercial attractants that are currently available but these traps and attractants have not been tested extensively in Missouri to determine whether they provide early warning, which could aid in early control. A good trap and attractant should be able to sample insects at both low and high insect population levels and also provide reliable estimate of damage levels based on the estimated population size. However, very few SWD traps and attractants can achieve this, which means that more research efforts are required to identify effective traps and attractants particularly, in Missouri. In addition, trap numbers when used in combination with degree-day accumulation can predict early emergence, and seasonal activity pattern of the insect. 

Objectives

  • Evaluate and fine-tune existing traps and lures as pest monitoring tools for Spotted Wind Drosophila

  • Develop a predictive model using historic trap numbers and degree-day accumulation to aid in proper and timely application of insecticides against Spotted Wind Drosophila

 

2021-Exploring linkages between IPM practices, social networks, and success of carrot weevil management in the Great Lakes & Mid-Atlantic Regions of the US

Project Director: Elizabeth Y. Long,  Purdue University

The carrot weevil (Listronotus oregonensis) is a pest that threatens carrots, parsley, and celery in key production regions of North America. The carrot weevil (CW) is a small snout beetle whose larvae feed on the stalk, crown, and roots of plants, causing severe injury and plant death. Progress towards management of this pest remains sporadic at best, and as a result, there is heavy reliance on insecticides, which are ineffective and routinely applied blindly. Key constraints to improving CW management are 1) lack of broader knowledge of growers’ IPM practices and knowledge networks across regions where focal crops are grown, and 2) lack of research-based information on the relative costs and benefits of IPM strategies for CW at the commercial field scale.

We propose an interdisciplinary approach to identify social and biological factors that influence the efficacy of CW management tactics across affected states in the Great Lakes and mid-Atlantic regions of the U. S.  Our goal is to identify key management-based factors that influence the efficacy of carrot weevil IPM tactics, so we can synthesize and develop modern management solutions. Although manipulative aspects of this proposal are focused in Ohio, this project represents the first regional effort to address critical CW knowledge gaps and develop future steps towards successful CW management across affected regions. 

Objectives

1A. Develop and disseminate a survey instrument to compile regional knowledge and adoption of IPM practices against vegetable insect pests, particularly CW.

1B. Assess the importance of knowledge networks in implementation of IPM practices against vegetable pests, particularly CW.

2. Conduct a cost-benefit analysis of CW management strategies in conventional versus delayed planting scenarios, using fresh parsley as a model system.

 

2020-Understanding Palmer amaranth and Waterhemp Demography in Alfalfa for Sustainable Management
Project Director: Erin Burns — Michigan State University

Herbicides drastically changed the agricultural industry in the 1950s, while also unintentionally placing selective pressure on resistant weed populations. The weed species Palmer amaranth and waterhemp recently rose to weeds of prominence in the North Central region, due to rapid plant evolution, resulting in significant yield losses and cost increases. Waterhemp and Palmer amaranth have an extended period of emergence allowing for significant emergence late into the growing season in annual crops. Uncontrolled plants can produce large numbers of seeds (> 1,000,000) thus increasing the soil seedbank for subsequent years. Herbicide resistant populations are common for both species as 28 states in the United States have documented resistance.

No new novel herbicide modes of action have been introduced to the market for approximately 25 years, suggesting that herbicides appear to be non-renewable resources. Therefore, sustainable management by implementing integrated pest management strategies by optimizing efficacy and longevity of current effective control methods is necessary. Understanding the biology, morphology, and ecological patterns of target species in the specific environment where they are growing is critical knowledge necessary to implement this. In alfalfa, the presence of dense, competitive vegetation before the typical first emergence timing could delay early emergence, but the frequent harvest intervals and resulting disturbance and light canopy opening could intensify the timing of emergence to specific times of the season. The overall goal of this research is to understand the emergence, establishment, and survivorship of Palmer amaranth and waterhemp in established alfalfa to be utilized in future development of ecologically-based integrated management practices for these highly aggressive and troublesome weed species.

2020-Soybean Cyst Nematode Resistance Management with Rotation, Cover Crops, and Manures
Project Directors: Marisol Quintanilla — Michigan State University

Soybean Cyst Nematode (SCN), is the most important pathogen of soybeans and is found throughout all soybean growing regions, causing estimated losses between $469 to $818 million, nationwide. While plant resistance is the most effective and commonly used control strategy against SCN, some SCN populations have adapted to the resistance. Moreover, some nematicides are labeled to control SCN, but additional control strategies are required to supplement the existing control strategies, especially considering that most nematologists have not found commonly used nematicide seed treatments to be very effective in reducing SCN numbers.

Evaluating a multi-faceted approach to SCN control will equip growers with an array of control strategies to slow down the process of developing resistance to resistant soybean varieties. Moreover, utilizing sustainable control strategies will improve soil health conditions and hopefully delay further resistance to SCN resistant cultivars. This group will research several alternative resistant cultivars, as well as the incorporation of cover crops and manure into a management system.  

2020-Developing Molecular Tool to Increase Throughput and Accuracy of Herbicide Resistance Weed Diagnostics
Project Directors: Eric Patterson — Michigan State University

The evolution of herbicide resistance is a complex problem that impacts food security, public health, and the value of property. One of the most effective techniques for managing resistance evolution is rotating herbicide modes and site of action so that resistance to any herbicide is not recurrently selected and spread to fixation. Accurate and rapid molecular diagnostics allow pest managers to make informed decisions about herbicide applications within the growing season, even allowing resistance to be predicted prior to herbicide application.

Assessing herbicide resistance in weedy species can be a time-and space-consuming task for diagnostic clinics. Once seeds reach the clinic, this screening process can take two or more months, depending on the species. That means it could take 6 or more months from the initial herbicide failure in the field until potential resistance is confirmed. It also risks introducing more potentially-resistant-seed into the seedbank as the grower waits to collect mature seed. The Federal IPM Coordinating Committee’s national research and technology development goals include development and delivery of rapid diagnostic tools to detect pesticide-resistant populations in order to better inform IPM practitioners. This project directly addresses that goal for growers in the North Central U.S. for managing weeds.

 

2019-Informing best management practices to reduce non-crop pesticide exposure for bees 

 

2019-IPM for soybean gall midge: understanding pest ecology and identifying management practices